Iterated Even-Mansour Schemes with Involutions

<u>Itai Dinur</u>¹, Orr Dunkelman^{2,4}, Nathan Keller³ and Adi Shamir⁴

¹École normale supérieure, France
²University of Haifa, Israel
³Bar-Ilan University, Israel
⁴The Weizmann Institute, Israel

The Iterated EM Scheme

- EM-based schemes are a **very hot** research area
- There are many possible key schedules

Involutions

- In practice the permutations F_i can be constructed using a block cipher without the key schedule
- Many of these constructions have the property that they are equal to their inverses
- A permutation F is called an involution if F=F⁻¹

Fixed Points of Involutions

- A random involution has an expected number of 2^{n/2}
 fixed-points
- x=F(x) → F'(x)=x+F(x)=0 → the 0 output value in F'(x) has an expected number of 2^{n/2} preimages
- When F is a random permutation the number of preimages of the most likely output is O(n)<< 2^{n/2}

- A 2-round iterated EM scheme with 1 key can be attacked in T≈2ⁿ/t [DDKS'13]
 - t is the number of preimages of the most likely output of F'(x)=x+F(x)
- When F_1 and F_2 are random permutations $T \approx 2^n/n$

- A 2-round iterated EM scheme with 1 key can be attacked in T≈2ⁿ/t [DDKS'13]
 - t is the number of preimages of the most likely output of F'(x)=x+F(x)
- When F_1 and F_2 are random permutations $T \approx 2^n/n$
- When F_1 (or F_2) is a random involution $T \approx 2^{n/2}$
 - The memory and data complexities are also significantly reduced

$$P_{i} \xrightarrow{F_{1}} F_{2} \xrightarrow{F_{2}} C_{i}$$

$$K \xrightarrow{K} \xrightarrow{K} \xrightarrow{K}$$

- A 3-round iterated EM scheme with 1 key can be attacked in T≈2ⁿ/Vt [DDKS'13]
- When all permutations are random T≈2ⁿ/√n

- A 3-round iterated EM scheme with 1 key can be attacked in T≈2ⁿ/Vt [DDKS'13]
- When all permutations are random T≈2ⁿ/√n
- When F_1 (or F_2 or F_3) is a random involution $T \approx 2^{3n/4}$
 - The memory and data complexities are also significantly reduced

A Surprising Application

 A 2-round iterated EM scheme with 1 key with random permutations can be attacked in T≈2ⁿ/n

A Surprising Application

- A 2-round iterated EM scheme with 1 key with random permutations can be attacked in T≈2ⁿ/n
- Add an arbitrary involutional round (unrelated to the original permutations)

A Surprising Application

- A 2-round iterated EM scheme with 1 key with random permutations can be attacked in T≈2ⁿ/n
- Add an arbitrary involutional round (unrelated to the original permutations)
- This **significantly reduces** the security to T≈2^{3n/4} !!
 - Also significantly reduces the data and memory complexities of the attack

Thank you for your attention!